Dry Creek Watershed Phase II

Dry Creek Watershed

The Spark

Heavy Use Area

Before Installing BMP

After Installing BMP

Heavy Use Area

Before Installation of BMP

After Installation of BMP BMP

Heavy Use Area for Feeding Cattle

Before BMP Installed

After BMP Installed

Heavy Traffic Area for Cattle

Heavy Use Area for Feeding Cattle

Before Installation of BMP

After Installation of BMP

Converting Pasture Land into Forest Land

After Chemical Site Prep

After Tree Planting

Tree Planting

Chemical Site Prep

Loblolly Pine Trees Planted

Cross Fence for Rotational Grazing

Installed BMP

Installed BMP

Cross Fence for Rotational Grazing

Installed Cross Fence

Installed Cross Fence

Fenced Cattle Out of Pond

Erosion Caused by Cattle

Watering Facility
Installed Below Pond

Installed Pipe Crossing

Pasture Planting for Cattle

Fungus Free Fescue

Fungus Free Fescue

Streambank and Shoreline Protection

Streambank Before Installing BMP

Streambank After Installing BMP

Streambank and Shoreline Protection

Streambank Before Installing BMP

Streambank After Installing BMP

Septic Tank Pump-Out Workshop

Soil Tunnel

Soil Tunnel

Touch Screen Learning Stations

Combine Simulator

Hamburger and Hotdog

"Maggie" The Milk Cow

Edible Aquifer @ Multi-Needs School Earth Day @ Cleveland High School

Groundwater Festivals

Water Cycle Bracelets

Edible Aquifer

Our Future

Dry Creek

James Mooney ADEM, Water Quality

adem.alabama.gov

Background

Dry Creek

- Black Warrior River Basin
- Town of Cleveland, Blount County

Alabama's 2014 303(d) List

Total Length: 12.00 miles

From: Locust Fork

To: Its Source

adem.alabama.gov

Background

- Currently Listed on Department's 2014 303(d) List of Impaired Waters for:
 - Nutrients
 - Organic Enrichment
 - Listed Sources: Municipal, Pasture Grazing
- Pathogen TMDL completed in 2009
- Dry Creek Ammonia Delisting Document completed in 2012

As the name suggests.....

ADEM

Dry Creek Watershed Projects

Phase 1 and 2 projects completed in watershed from 2007 to 2013.

Numerous Best Management Practices (BMPs) implemented throughout the watershed.

adem.alabama.gov

ADEM

Dry Creek 2014 Sampling

ADEM's 2014 Nonpoint Source (NPS) post-BMP sampling efforts

• Goal of the project was to gain a better understanding of the water quality conditions in Dry Creek following the implementation of the numerous agricultural best management practices in the watershed during 2007 to 2013.

adem.alabama.gov

ADEM

Dry Creek 2014 Sampling

- •Three Stations Sampled (DRYB-10, DRYB-80, DRYB-75A)
- •Monthly Samples: March October (8 Total)

Physical Parameters:

- Temperature - Turbidity

Stream FlowSpecific ConductivityTotal Dissolved SolidsTotal Suspended Solids

- Alkalinity

Chemical Parameters:

- Dissolved Oxygen - Dissolved Reactive Phosphorus

- pH - Total Phosphorus

- Ammonia Nitrogen- Nitrate + Nitrite Nitrogen- CBOD5- Chlorides

- Total Kjeldahl Nitrogen

- Total Nitrogen

Biological Parameters:

- Chlorophyll a -E. coli

adem.alabama.gov

Data Analysis

The Department does not currently have numeric nutrient criteria for wadeable streams.

Eco-Reference Guideline Approach

Reference streams are defined as relatively uniform areas of similar ecological characteristics which have remained relatively undisturbed or minimally impacted by human activity over an extended period of time in relation to other waters of the State.

Reference streams represent desirable chemical, physical and biological conditions for a given ecoregion that can be used for evaluation purposes.

Dry Creek watershed is entirely located within the Level IV Ecoregion 68d – Southern Table Plateaus.

Alabama Level IV Eco-regions

adem.alabama.gov

•••■••• DRYB-10

- ▲ - DRYB-75A

Total Phosphorus

Eco-reference Guideline Total Phosphorus = 0.049 mg/L

Station DRYB-10

2014 Median Total Phosphorus = 0.020 mg/L

Station DRYB-75A

2014 Median Total Phosphorus = 0.045 mg/L

			ad		.ala		ama	a.g	ov												-			
on	_	0	Q ₂		00		<u> </u>		9	\ <u>\</u>	00	<i>Q</i> .		300			0,		<u></u>		20		Q ₂	
		3.01	,0 ¹	3.0 ⁰	501 N	,0 ¹	,o ¹ ,0	10 ¹ 00	1201 1201	700	MOS V	100,10	00°00	, 200. 1, 200.	, o, 1	, ⁸ 0,	in Constitution	2, V	1,7 ₁ 08	,	, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	,^\\\	, 800 V	NA
	0.00																	<u></u>		.=				
	0.05	and the second						360031131131	1		X	88118888111118				811811811881	1			/	<u> </u>	^		`_
	0.10			,					1	A		A					1				_		A	
·	0.15				i			1				,	1				i							
TP n	0.20				,			1					<u>~</u>				1							
Ja/L	0.20				, ,			1						Ā										
	0.25				i										<i></i>			L	Eco	Re	f = (0.04	9 m	g/L
	0.30					<u>i</u>	\ \ \								,			_						
	0.35					1 \										/								
	0.40					1										/1								

Station	2008 Average TP	2014 Average TP	Percent Reduction		
DRYB-10	0.035	0.018	49%		
DRYB-75A	0.178	0.054	70%		

Total Nitrogen

Eco- reference Guideline Total Nitrogen = 2.269 mg/L

Station DRYB-10

2014 Median Total Nitrogen = 0.703 mg/L

Station DRYB-75A

2014 Median Total Nitrogen = 0.578 mg/L

Station	2008 Average TN	2014 Average TN	Percent Reduction		
DRYB-10	1.404	0.666	53%		
DRYB-75A	1.517	0.655	57%		

Total Kjeldahl Nitrogen (TKN)

- -TKN = NH3 + TON
- -Used as a surrogate to track NBOD

Organic Enrichment (CBDO, NBOD)

Eco- reference Guideline TKN = 1.460 mg/L

Station DRYB-10

2014 Median TKN = 0.270 mg/L

Station DRYB-75A

2014 Median TKN = 0.540 mg/L

Station	2008 Average TKN	2014 Average TKN	Percent Reduction			
DRYB-10	1.089	0.276	75%			
DRYB-75A	1.084	0.470	57%			

Chlorophyll-a, a photosynthetic pigment and sensitive indicator of algal

sensitive indicator of algal biomass, is considered the most important biological response variable for nutrientrelated impairment problems.

Elevated chlorophyll a concentrations are indicative of a high presence of algal growth, which in turn affects the dissolved oxygen balance through photosynthesis, respiration, and the regeneration of organic materials.

Therefore, the Department also focuses on instream chlorophyll a concentrations to evaluate if a nutrient related impairment exists.

adem.alabama.gov

Station	# Samples	Median	# of Samples @ MDL
DRYB-10	5	1.07	2
DRYB-80	6	1.21	2
DRYB-75A	8	1.04	4

Conclusion

James Mooney

jjmooney@adem.state.al.us 334-394-4352

Kimberly Minton

Technical Support Section Chief

kminton@adem.state.al.us 334-271-7826

adem.alabama.gov